Level density and level-spacing distributions of random, self-adjoint, non-Hermitian matrices.

نویسندگان

  • Yogesh N Joglekar
  • William A Karr
چکیده

We investigate the level density σ(x) and the level-spacing distribution p(s) of random matrices M = AF ≠ M{†}, where F is a (diagonal) inner product and A is a random, real, symmetric or complex, Hermitian matrix with independent entries drawn from a probability distribution q(x) with zero mean and finite higher moments. Although not Hermitian, the matrix M is self-adjoint with respect to F and thus has purely real eigenvalues. We find that the level density σ{F}(x) is independent of the underlying distribution q(x) and solely characterized by F, and therefore generalizes the Wigner semicircle distribution σ{W}(x). We find that the level-spacing distributions p(s) are independent of q(x), and are dependent upon both the inner product F and whether A is real or complex, and therefore generalize the Wigner surmise for level spacing. Our results suggest F-dependent generalizations of the well-known Gaussian Orthogonal Ensemble and Gaussian Unitary Ensemble classes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wegner estimate and level repulsion for Wigner random matrices

We consider N × N Hermitian random matrices with independent identically distributed entries (Wigner matrices). The matrices are normalized so that the average spacing between consecutive eigenvalues is of order 1/N . Under suitable assumptions on the distribution of the single matrix element, we first prove that, away from the spectral edges, the empirical density of eigenvalues concentrates a...

متن کامل

Spectral density of generalized Wishart matrices and free multiplicative convolution.

We investigate the level density for several ensembles of positive random matrices of a Wishart-like structure, W=XX(†), where X stands for a non-Hermitian random matrix. In particular, making use of the Cauchy transform, we study the free multiplicative powers of the Marchenko-Pastur (MP) distribution, MP(⊠s), which for an integer s yield Fuss-Catalan distributions corresponding to a product o...

متن کامل

A pseudo-unitary ensemble of random matrices, PT-symmetry and the Riemann Hypothesis

An ensemble of 2 × 2 pseudo-Hermitian random matrices is constructed that possesses real eigenvalues with level-spacing distribution exactly as for the Gaussian unitary ensemble found by Wigner. By a re-interpretation of Connes’ spectral interpretation of the zeros of Riemann zeta function, we propose to enlarge the scope of search of the Hamiltonian connected with the celebrated Riemann Hypoth...

متن کامل

Some generic properties of level spacing distributions of 2D real random matrices

Abstract: We study the level spacing distribution P (S) of 2D real random matrices both symmetric as well as general, non-symmetric. In the general case we restrict ourselves to Gaussian distributed matrix elements, but different widths of the various matrix elements are admitted. The following results are obtained: An explicit exact formula for P (S) is derived and its behaviour close to S = 0...

متن کامل

Universality of the Local Spacing Distribution in Certain Ensembles of Hermitian Wigner Matrices

Abstract. Consider an N × N hermitian random matrix with independent entries, not necessarily Gaussian, a so called Wigner matrix. It has been conjectured that the local spacing distribution, i.e. the distribution of the distance between nearest neighbour eigenvalues in some part of the spectrum is, in the limit as N → ∞, the same as that of hermitian random matrices from GUE. We prove this con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011